Characterization of the CaCl₂–YbCl₂ and CaCl₂–YbCl₃ Systems by X-Ray Powder Diffraction

W. LASOCHA,¹ A. LASOCHA,¹ and H. A. EICK²

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322

Received November 27, 1989, in revised form March 5, 1990

The CaCl₂-YbCl₂ and CaCl₂-YbCl₃ systems were investigated by X-ray powder diffraction methods. The CaCl₂-YbCl₂ system exhibits two solid-solution regions: one spans 0- 15 and the other ~55-100 mole % YbCl₂. The CaCl₂-YbCl₃ system, on the other hand, is best characterized by essentially total insolubility of the parent phrases. © 1990 Academic Press, Inc.

Introduction

Mixtures of nonisomorphous parent phases usually produce either eutectic structures or two solid-solution regions separated by one or more different structure-type phases (1). Isomorphous systems, on the other hand, typically exhibit only continuous solid-solution over the full composition range (1, 2). The CN VI crystal radii of Ca²⁺ and Yb²⁺ are almost identical, 1.14 vs. 1.16 Å, respectively, whereas that of Yb³⁺ is slightly smaller, 1.008 Å (3). The CN VII crystal radii of Ca²⁺ and Yb²⁺ are 1.20 and 1.22 Å, respectively. When pure CaCl₂ is melted and subsequently quenched, the coexisting (pseudo-rutile, *Pnnm*) CaCl₂-type and (*Pbnm*) α -PbO₂-type structures typically result (4); a (Pbca) SrI₂-type structure is observed under high pressure (5). The SrI_2 -type structure is also exhibited by $YbCl_2$ (6, 7). Since mixed

² To whom correspondence should be addressed.

halide systems frequently exhibit a modification characteristic of the high pressure form of one of the parent phrases, an intermediate composition SrI_2 -type phase was expected in the $CaCl_2$ -YbCl₂ system (8). The related $CaCl_2$ -Ybl₂ system was complicated. It evidenced two intermediate phases which extended over wide composition limits: a "6-R" CdI₂-type polytype and a phase whose structure could not be characterized (9). These observations suggested that this $CaCl_2$ -YbCl₂ system might be particularly interesting.

The divalent-trivalent system, on the other hand, appeared less likely to yield intermediate composition phases because of significant differences in structure types, Cl/M ratio, and ion sizes. Pure YbCl₃ exhibits the (C2/m) AlCl₃-type structure (10). However. C2/mtrivalent lanthanoid halides combine with divalent halides to form vernier-type structures, e.g., Yb₆Cl₁₃ and Yb_5ErCl_{13} (11), and C2/m symmetry DyCl₃ combines with cubic $SrCl_2$ (12). No report of a calcium-lanthanum halide vernier-type phase could be found. Thus, an

0022-4596/90 \$3.00 Copyright © 1990 by Academic Press, Inc.

All rights of reproduction in any form reserved.

¹ On leave from Jagiellonian University, Department of Crystal Chemistry, Krakow, Poland

Experimental

Reactants YbCl₂ and YbCl₃ were synthesized from Yb₂O₃ (99.9%, Research Chemicals, Phoenix, AZ). The trihalide was prepared by the ammonium halide matrix procedure (13, 14) as described previously (15). The impure product, confined in a previously outgassed quartz tube, was purified by sublimation in a 10^{-6} Torr vacuum at ~920°C. YbCl₂ was prepared from a 2:1 YbCl₃:Yb (99.9%, Research Chemicals) mixture as described previously (16). Anhydrous CaCl₂ (reagent grade, Mallinckrodt, St. Louis, MO) was melted in vacuum prior to use. All halide manipulations were effected in an argon-filled glove box whose atmosphere was continuously purged of both H₂O (molecular sieves) and O₂ (heated BASF catalyst).

The CaCl₂-YbCl₂ specimens were prepared by grinding stoichiometric proportions of the reactants in an agate mortar, confining the mixtures in previously outgassed quartz tubes, heating them to melting under vacuum with a hand torch, and then air-quenching them. Selected specimens were resealed in quartz, heated to melting in a tube furnace and cooled to room temperature over a 48-hr period.

In the CaCl₂-YbCl₃ system 10, 20, 50, and 70 mole% YbCl₃ mixtures were examined. These preparations, mixed as described above, were confined in pyrolytic graphite crucibles and heated in a tube furnace under high vacuum at 400°C for an hour. The temperature was increased to 500°C, the assembly filled with prepurified Ar, and the temperature then elevated above the YbCl₃ melting point, 865°C (17), and maintained there for ~20 min. The heating assembly was then removed quickly from the furnace to quench the molten specimen.

The pulverized products were examined an evacuated 114.6-mm-diameter in Guinier-Hägg X-ray camera with $CuK\alpha_1$ $(\lambda \alpha_1 = 1.54050 \text{ Å})$ radiation; NBS certified Si (a = 5.43082(4) Å) was the internal standard. Reflection positions were determined as described previously (15). Lattice parameters calculated initially with a locally written least-squares program were refined with the program APPLEMAN (18). For selected compositions theoretical X-ray powder diffraction intensities were calculated on a VAX 11/750 computer with the program POWD12 (19); exponential scattering factors were used with estimated temperature factors of 1.5 Å² for anions and 1.0 $Å^2$ for cations.

Results and Discussion

The CaCl₂-YbCl₃ System

The phases C2/m YbCl₃ and *Pnnm*-type (pseudo-rutile) CaCl₂ were identified at the 10, 20, 50, and 70 mole % YbCl₃ compositions. Lattice parameters observed for YbCl₃, a = 6.739(3) Å, b = 11.651(8) Å, c =6.383(4) Å, $\beta = 110.51(5)^{\circ}$, are in good agreement with literature values (15). Even 10 mole % YbCl₃ specimens exhibited readily detectable interplanar d-spacings assignable to $YbCl_3$. Lattice parameter data indicate no solubility whatsoever of CaCl₂ in YbCl₃; volume/cation data remain invariant within uncertainty limits. The observed *Pnnm* CaCl₂ lattice parameters, a =6.261(2) Å, b = 6.436(3) Å, and c = 4.166(2)Å, agree well with literature values (9). However, the very small increase observed in the CaCl₂ lattice parameters at the 20 mole % composition, a = 6.262(2) Å, b =6.439(3) Å, and c = 4.171(1) Å, may suggest minimal Yb³⁺ solubility in CaCl₂. Although the Yb³⁺ ion is smaller than that of $Ca^{2+}(3)$, the need for charge balance would require

introduction of either cation vacancies or excess anions into the lattice. Both effects would lead to lattice expansion. The absence of appreciable YbCl₃ solubility suggests either that the rutile-type structure does not dissolve trivalent lanthanoid at all or that the lattice energy is so great it cannot tolerate the disorder that would be created by substitution of the higher charged Yb³⁺ cation.

We observed a similar absence of YbCl₃ solubility in SrCl₂, a salt well-known for its ability to solubilize trivalent chlorides (20, 21) and to form vernier phases such as (Sr, Eu)Cl_{2+x} (12) and (Sr, Nd)Cl_{2+x} (22). The YbCl₃ insolubility in SrCl₂ suggests that the problem stems as much, if not more, from the unique properties of ytterbium salts as it does from those of calcium salts.

It is somewhat surprising that the α -PbO₂ modification of CaCl₂ was not observed in this system since it was present in the $CaCl_2-YbI_2$ system (9). Its absence may result because an intermediate such as $(Ca, Yb)Cl_{2+x}$ forms at elevated temperatures and decomposes as the mixture is cooled. A decomposition mechanism is suggested by the appearance of the X-ray powder diffraction films. YbCl₃ prepared by thermal decomposition of $(NH_4)_3$ YbCl₆ (14) at ~450°C produces an X-ray powder diffraction pattern with a small number of broad reflections whose intensities differ significantly from those of previously melted YbCl₃. The X-ray diffraction patterns of the YbCl₃ component in the melted CaCl₂-YbCl₃ specimens were similar to those of thermally decomposed $(NH_4)_3$ YbCl₆. This observation suggests that a high temperature phase of intermediate composition decomposed at ~450°C to produce the characteristic YbCl₃ decomposition product, not the product expected from the quenching of a melted specimen. This decomposition may then lead to the pseudo-rutile form and to exclusion of the

 α -PbO₂ form. Unfortunately, the hypothesis can be verified only either by high temperature X-ray diffraction studies or through more rapid quenching than was achievable.

The CaCl₂-YbCl₂ System

Two solid-solution regions were observed. The first spans 0 to ~15 mole % YbCl₂ and exhibits the pseudo-rutile and α -PbO₂-type CaCl₂ polymorphic modifications (23). The second spans ~55 to 100 mole % YbCl₂ and exhibits the SrI₂-type structure common to YbCl₂.

Lattice parameters (and cell volume/cation data) presented in Table I for 10, 20, 30, 50, and 70 mole % YbCl₂ specimens as well as X-ray powder diffraction intensity variations substantiate these solubility limits. A comparison between observed and calculated X-ray powder diffraction intensities suggests a 10–20 mole % YbCl₂ solubility limit in both CaCl₂ lattice modifications. For example, the Pnnm CaCl₂ (011) reflection is absent in pure CaCl₂, but is observed in 10-30 mole % YbCl₂ specimens. Intensities calculated for this reflection are 1, 7, and 10 for 0, 10, and 20 mole % YbCl₂ specimens, respectively. Since X-ray powder diffraction patterns of 20 mole % YbCl₂ specimens also exhibit a few reflections assignable to YbCl₂, the solubility limit in *Pnnm* CaCl₂ is established at \sim 15 mole %. On the other hand, in the α -PbO₂-type structure the intensity of the (111), (121), and (221) reflections, which differ in pure $CaCl_2$, were of nearly the same intensities in samples which contained from 10 to 40 mole % YbCl₂, suggestive of an ~ 10 mole % YbCl₂ solubility limit. Other X-ray reflection intensity variations were consistent with this solubility limit. Since in both CaCl₂ polytypes there is only one cation position and since reflections suggestive of superstructure were not observed, a random cationic arrangement was assumed for these intensity calculations.

Mole % YbCl₂	Phase(s) observed ^a	Lattice parameters			TT 1 /	
		a Å	ЬÅ	c Å	(Å ³)	Reference ^b
0	CaCl ₂	6.253 (2)	6.434 (3)	4.167 (2)	83.82	(9)
		6.261 (2)	6.426 (2)	4.167 (1)	82.76	
	α -PbO ₂	6.268 (1)	7.619 (6)	6.923 (4)	82.65	(4)
		6.280 (1)	7.620 (2)	6.918 (2)	82.76	
10	CaCl ₂	6.263 (1)	6.441 (2)	4.174 (1)	84.27	
	α -PbO ₂	6.289 (7)	7.65 (1)	6.913 (6)	83.12	
20	CaCl ₂	6.268 (1)	6.451 (2)	4.180 (1)	84.51	
	α -PbO ₂	6.296 (1)	7.642 (2)	6.978 (1)	83.33	
30	CaCl ₂	6.279 (1)	6.451 (1)	4.181 (1)	84.67	
	α -PbO ₂	6.314 (3)	7.627 (5)	6.936 (3)	83.50	
50	YbCl ₂	13.114 (3)	6.915 (2)	6.682 (1)	75.74	
70	YbCl ₂	13.133 (2)	6.935 (1)	6.697 (1)	76.24	
100	YbCl ₂	13.143 (2)	6.948 (1)	6.698 (1)	76.46	
	-	13.15 (3)	6.94 (2)	6.69 (2)	76.3	(6)

LATTICE PARAMETERS AND VOLUME/CATION DATA AT SELECTED COMPOSITIONS IN THE CaCl-YbCl, System

^a Observed structure types are CaCl₂, Pbnm α-PbO₂ and Pnnm pseudo-rutile; YbCl₂, Pbca.

^b This work, except as noted.

A solid-solution with the YbCl₂-type structure was observed in the \sim 55–100 mole % YbCl₂ region. Since both cations have nearly identical ionic radii, factors other than radii limit solubility. Possible factors include electronic configuration and coordination preference differences. The common Ca2+ coordination number in $CaCl_2$ is six (4); under high pressure it forms the seven coordinate SrI₂-type structure common to $YbCl_2$ (5). Unlike CaCl₂, YbCl₂ does not exhibit polymorphic modifications. Thus, the coordination number preferred by Ca²⁺ is six with seven possible, while that for Yb²⁺ is seven. In fact, Yb²⁺ in the vernier-type structures exhibits seven or higher coordination numbers (11). This coordination preference by ytterbium may limit the solubility of the Yb²⁺ cation in the CaCl₂-type structure. However, the $CaCl_2-MCl_2$ systems for M = Eu and Sr exhibit the seven coordinate SrI₂-type structure not common to either parent phase at the 40-60 mole % CaCl₂ composition (24). Thus formation of a seven coordinate SrI_2 -type structure is possible for $CaCl_2$, and its absence in this system must relate more to the character of the combination than to that of either chloride.

Acknowledgment

Support of the National Science Foundation, Division of Materials Research, Solid State Chemistry Program, DMR 84-00739, is gratefully acknowledged.

References

- P. K. DAVIES AND A. NAVROTSKY, J. Solid State Chem. 46, 1 (1983).
- 2. G. GARTON AND P. J. WALKER, *Mater. Res. Bull.* 17, 1227 (1982).
- 3. R. D. SHANNON, Acta Crystallogr. Sect A 32, 751 (1976).
- 4. B. ANSELMENT, Ph.D. dissertation, Universität Karlsruhe (1985).
- 5. H. P. BECK, Z. Anorg. Allg. Chem. 459, 72 (1979).
- H. BÄRNIGHAUSEN, H. PÄTOW, AND H. P. BECK, Z. Anorg. Allg. Chem. 403, 45 (1974).

- H. P. BECK AND H. BÄRNIGHAUSEN, Z. Anorg. Allg. Chem. 386, 221 (1971).
- 8. C. A. VOOS-ESQUIVEL AND H. A. EICK, J. Solid State Chem. 67, 291 (1987).
- 9. A. LASOCHA, W. LASOCHA, AND H. A. EICK, J. Solid State Chem. 80, 222 (1989).
- D. BROWN, "Halides of the Transition Elements. I. Halides of the Lanthanides and Actinides," Wiley, London (1968).
- 11. H. LÜKE AND H. A. EICK, Inorg. Chem. 21, 965 (1982).
- 12. H. BÄRNIGHAUSEN, Proc. Rare Earth Res. Conf. 12th 1, 404 (1976).
- 13. M. D. TAYLOR, Chem. Rev. 62, 503 (1962).
- 14. G. MEYER AND P. AX, Mater. Res. Bull. 17, 1447 (1982).
- M. OLEJAK-CHODAN, W. LASOCHA, AND H. A. EICK, J. Solid State Chem. 73, 259 (1988).
- W. LASOCHA, C. A. VOOS-ESQUIVEL, S. A. HO-DOROWICZ, B. Y. KIM, AND H. A. EICK, J. Solid State Chem. 74, 67 (1988).

- D. E. COX AND F. K. FONG, J. Cryst. Growth 20, 233 (1973).
- 18. D. E. APPLEMAN, D. S. HANDWERKER, AND H. T. EVANS, "Program X-Ray" Geological Survey, U.S. Dept. of Interior, Washington, DC (1966).
- 19. D. K. SMITH, M. C. NICHOLS, AND M. E. ZO-LENSKY, "A FORTRAN IV Program for Calculating X-Ray Powder Diffraction Patterns: Version 10," Pennsylvania State University, University Park (1983).
- P. J. BENDALL, C. R. A. CATLOW, AND B. E. F. FENDER, J. Phys. C: Solid State Phys. 17, 797 (1984).
- E. MASON AND H. A. EICK, J. Solid State Chem. 47, 314 (1983).
- S. A. HODOROWICZ, M. OLEJAK-CHODAN, AND H. A. EICK, J. Solid State Chem. 71, 205 (1987).
- 23. W. LASOCHA AND H. A. EICK, J. Solid State Chem. 75, 175 (1988).
- 24. M. OLEJAK-CHODAN AND H. A. EICK, J. Solid State Chem. 69, 274 (1987).